2,342 research outputs found

    Radial Trends in IMF-Sensitive Absorption Features in Two Early-Type Galaxies: Evidence for Abundance-Driven Gradients

    Get PDF
    Samples of early-type galaxies show a correlation between stellar velocity dispersion and the stellar initial mass function (IMF) as inferred from gravity-sensitive absorption lines in the galaxies' central regions. To search for spatial variations in the IMF, we have observed two early-type galaxies with Keck/LRIS and measured radial gradients in the strengths of absorption features from 4000-5500 \AA \, and 8000-10,000 \AA. We present spatially resolved measurements of the dwarf-sensitive spectral indices NaI (8190 \AA) and Wing-Ford FeH (9915 \AA), as well as indices for species of H, C2_2, CN, Mg, Ca, TiO, and Fe. Our measurements show a metallicity gradient in both objects, and Mg/Fe consistent with a shallow gradient in \alpha-enhancement, matching widely observed trends for massive early-type galaxies. The NaI index and the CN1_1 index at 4160 \AA \, exhibit significantly steeper gradients, with a break at r0.1reffr \sim 0.1 r_{\rm eff} (r300r \sim 300 pc). Inside this radius NaI strength increases sharply toward the galaxy center, consistent with a rapid central rise in [Na/Fe]. In contrast, the ratio of FeH to Fe index strength decreases toward the galaxy center. This behavior cannot be reproduced by a steepening IMF inside 0.1reff0.1 r_{\rm eff} if the IMF is a single power law. While gradients in the mass function above 0.4M\sim 0.4 M_\odot may occur, exceptional care is required to disentangle these IMF variations from the extreme variations in individual element abundances near the galaxies' centers.Comment: Accepted for publication in ApJ. Updates from v1 include an expanded comparison of measured index strengths to SPS models. 20 page body + 7 page appendix + references. Includes 25 figure

    The orbital motion of the Arches cluster — clues on cluster formation near the galactic center

    Get PDF
    The Arches cluster is one of the most massive, young clusters in the Milky Way. Located inside the central molecular zone in the inner 200 pc of the Galactic center, it formed in one of the most extreme star-forming environments in the present-day Galaxy. Its young age of only 2.5 Myr allows us to observe the cluster despite the strong tidal shear forces in the inner Galaxy. The orbit of the cluster determines its dynamical evolution, tidal stripping, and hence its fate. We have measured the proper motion of the Arches cluster relative to the ambient field from Keck/NIRC2 LGS-AO and VLT/NAOS-CONICA NGS-AO observations taken 4.3 years earlier. When combined with the radial velocity, we derive a 3D space motion of 232 ± 30 km/s for the Arches. This motion is exceptionally large when compared to molecular cloud orbits in the GC, and places stringent constraints on the formation scenarios for starburst clusters in dense, nuclear environments

    Astrometric performance of the Gemini multi-conjugate adaptive optics system in crowded fields

    Get PDF
    The Gemini Multi-conjugate adaptive optics System (GeMS) is a facility instrument for the Gemini-South telescope. It delivers uniform, near-diffraction-limited image quality at near-infrared wavelengths over a 2 arcminute field of view. Together with the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared wide field camera, GeMS/GSAOI's combination of high spatial resolution and a large field of view will make it a premier facility for precision astrometry. Potential astrometric science cases cover a broad range of topics including exo-planets, star formation, stellar evolution, star clusters, nearby galaxies, black holes and neutron stars, and the Galactic center. In this paper, we assess the astrometric performance and limitations of GeMS/GSAOI. In particular, we analyze deep, mono-epoch images, multi-epoch data and distortion calibration. We find that for single-epoch, un-dithered data, an astrometric error below 0.2 mas can be achieved for exposure times exceeding one minute, provided enough stars are available to remove high-order distortions. We show however that such performance is not reproducible for multi-epoch observations, and an additional systematic error of ~0.4 mas is evidenced. This systematic multi-epoch error is the dominant error term in the GeMS/GSAOI astrometric error budget, and it is thought to be due to time-variable distortion induced by gravity flexure.Comment: 16 pages, 22 figures, accepted for publication in MNRA

    A re-analysis of the isolated black hole candidate OGLE-2011-BLG-0462/MOA-2011-BLG-191

    Full text link
    There are expected to be 108\sim 10^8 isolated black holes (BHs) in the Milky Way. OGLE-2011-BLG-0462/MOA-2011-BLG-191 (OB110462) is the only such BH with a mass measurement to date. However, its mass is disputed: Lam et al. (2022a,b) measured a lower mass of 1.64.4M1.6 - 4.4 M_\odot, while Sahu et al. (2022); Mr\'{o}z et al. (2022) measured a higher mass of 5.88.7M5.8 - 8.7 M_\odot. We re-analyze OB110462, including new data from the Hubble Space Telescope (HST) and re-reduced Optical Gravitational Lensing Experiment (OGLE) photometry. We also re-reduce and re-analyze the HST dataset with newly available software. We find significantly different (1\sim 1 mas) HST astrometry than Lam et al. (2022a,b) in the de-magnified epochs due to the amount of positional bias induced by a bright star \sim0.4 arcsec from OB110462. After modeling the updated photometric and astrometric datasets, we find the lens of OB110462 is a 6.01.0+1.2M6.0^{+1.2}_{-1.0} M_\odot BH. Future observations with the Nancy Grace Roman Space Telescope, which will have an astrometric precision comparable or better to HST but a field of view 100×100\times larger, will be able to measure hundreds of isolated BH masses via microlensing. This will enable the measurement of the BH mass distribution and improve understanding of massive stellar evolution and BH formation channels.Comment: 23 pages, 18 figures, 8 tables. Accepted for publication in ApJ on 2 Aug 2023 [Same as v1, just fixed typo in email address

    Discovery of low-metallicity stars in the central parsec of the Milky Way

    Full text link
    We present a metallicity analysis of 83 late-type giants within the central 1 pc of the Milky Way. K-band spectroscopy of these stars were obtained with the medium-spectral resolution integral-field spectrograph NIFS on Gemini North using laser-guide star adaptive optics. Using spectral template fitting with the MARCS synthetic spectral grid, we find that there is large variation in metallicity, with stars ranging from [M/H] << -1.0 to above solar metallicity. About 6\% of the stars have [M/H] << -0.5. This result is in contrast to previous observations, with smaller samples, that show stars at the Galactic center have approximately solar metallicity with only small variations. Our current measurement uncertainties are dominated by systematics in the model, especially at [M/H] >> 0, where there are stellar lines not represented in the model. However, the conclusion that there are low metallicity stars, as well as large variations in metallicity is robust. The metallicity may be an indicator of the origin of these stars. The low-metallicity population is consistent with that of globular clusters in the Milky Way, but their small fraction likely means that globular cluster infall is not the dominant mechanism for forming the Milky Way nuclear star cluster. The majority of stars are at or above solar metallicity, which suggests they were formed closer to the Galactic center or from the disk. In addition, our results indicate that it will be important for star formation history analyses using red giants at the Galactic center to consider the effect of varying metallicity.Comment: 11 pages, 10 figures, ApJ Accepte

    Properties of the Remnant Clockwise Disk of Young Stars in the Galactic Center

    Get PDF
    We present new kinematic measurements and modeling of a sample of 116 young stars in the central parsec of the Galaxy in order to investigate the properties of the young stellar disk. The measurements were derived from a combination of speckle and laser guide star adaptive optics imaging and integral field spectroscopy from the Keck telescopes. Compared to earlier disk studies, the most important kinematic measurement improvement is in the precision of the accelerations in the plane of the sky, which have a factor of six smaller uncertainties (~10 uas/yr/yr). We have also added the first radial velocity measurements for 8 young stars, increasing the sample at the largest radii (6"-12") by 25%. We derive the ensemble properties of the observed stars using Monte-Carlo simulations of mock data. There is one highly significant kinematic feature (~20 sigma), corresponding to the well-known clockwise disk, and no significant feature is detected at the location of the previously claimed counterclockwise disk. The true disk fraction is estimated to be ~20%, a factor of ~2.5 lower than previous claims, suggesting that we may be observing the remnant of what used to be a more densely populated stellar disk. The similarity in the kinematic properties of the B stars and the O/WR stars suggests a common star formation event. The intrinsic eccentricity distribution of the disk stars is unimodal, with an average value of = 0.27 +/- 0.07, which we show can be achieved through dynamical relaxation in an initially circular disk with a moderately top-heavy mass function.Comment: 65 pages, 22 figures, 8 tables, submitted to Ap

    Mapping the Outer Edge of the Young Stellar Cluster in the Galactic Center

    Full text link
    We present new near-infrared spectroscopic observations of the outer edges of the young stellar cluster around the supermassive black hole at the Galactic center. The observations show a break in the surface-density profile of young stars at approximately 13 arcsec (0.52 pc). These observations spectroscopically confirm previous suggestions of a break based on photometry. Using Gemini North's Near-Infrared Integral Field Spectrometer (NIFS) we are able to detect and separate early- and late-type stars with a 75% completeness at Ks = 15.5. We sample a region with radii between 7" to 23" (0.28 pc to 0.92 pc) from Sgr A*, and present new spectral classifications of 144 stars brighter than Ks = 15.5, where 140 stars are late-type (> 1 Gyr) and only four stars are early-type (young, 4-6 Myr). A broken power-law fit of the early-type surface-density matches well with our data and previously published values. The projected surface-density of late-type stars is also measured and found to be consistent with previous results. We find that the observed early-type surface-density profile is inconsistent with the theory of the young stars originating from a tightly bound infalling cluster, as no significant trail of young stars is found at radii above 13". We also note that either a simple disk instability criterion or a cloud-cloud collision could explain the location of the outer edge, though we lack information to make conclusive remarks on either alternative. If this break in surface-density represents an edge to the young stellar cluster it would set an important scale for the most recent episode of star formation at the Galactic center.Comment: 17 pages, 11 figures, 3 tables, ApJ accepte

    Recent Results and Perspectives for Precision Astrometry and Photometry with Adaptive Optics

    Get PDF
    Large ground-based telescopes equipped with adaptive optics (AO) systems have ushered in a new era of high-resolution infrared photometry and astrometry. Relative astrometric accuracies of <0.2 mas have already been demonstrated from infrared images with spatial resolutions of 55-95 mas resolution over 10-20'' fields of view. Relative photometric accuracies of 3% and absolute photometric accuracies of 5%-20% are also possible. I will review improvements and current limitations in astrometry and photometry with adaptive optics of crowded stellar fields. These capabilities enable experiments such as measuring orbits for brown dwarfs and exoplanets, studying our Galaxy's supermassive black hole and its environment, and identifying individual stars in young star clusters, which can be used test the universality of the initial mass function.Comment: SPIE Conference Proceedin
    corecore